
AVF Control Number: AVF-VSR-018
(~J SZT-AVF-019

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 88052411.09118
SYSTEAM KG

SYSTEAM Ada Compiler VAX/VMS
Version 1.8
VAX 8530

Completion of On-Site Testing:
88-05-24

Prepared BY:
IABG m.b.Ii., Dept SZT
Einsteinstrasse 20

8012 Ottobrunn
Federal Republic of Germany

Prepared For:
Ada Joint Program Office DI

United States Department of Defense E B T 1C8
Vahntn .. 23138 E E T 0
Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

Disrfufl 89 2 13 0 9

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE REA NSTRCTONS
BEFORE COMPLETEING FORK

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtIte) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validatiqn Summtry Report: 24 May 1988 to 24 May 1989
SYSTEAM KG SYSTEAM Ada Compier VAX MS,
Version 1.8, VAX 8530 (Host anq, Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

IABG,
Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 24 May 1988
United States Department of Defense 13 NUMUR Of- PAS
Washington, DC 20301-3081 49 p.

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIF[ED

IABG, 15. R 6JF1CATION/OWNGRAOING
Ottobrunn, Federal Republic of Germany. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in BIock 2O. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
SYSTEAM Ada Compiler VAX/VMS, Version 1.8, SYSTEAM KG, IABG, VAX 8530 under VMS, Version 4.7
(Host and (Target), ACVC 1 . 9.

DO lul 1473 EDITION OF I NOV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6ftI UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: SYSTEAN Ada Compiler VAX/VMS
Compiler Version: Version 1.8

Certificate Number: 88052411.09118

Host and target: VAX 8530 under VNS, Version 4.7

Testing Completed 88-05-24 Using ACVC 1.9

OThis report has been reviewed and Is approved.

URW.E -.7-Det sZ
Dr. H. Hu mel

Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

A'da Validato Oganization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jndta Program Office
Virginia L. Castor
Director
Department of Defense
Vashington DC 20301

2

CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES....... 1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS Y CLASS. 3-
3.3 SUMMARY OF TEST RESULTS BY CHAPTER. 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method. 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

Accession For

APPENDIX D VITHDRAVN TESTS NTIS GRAIr
DTICTI 0
Uriannounced 0
Ju it if .ton

By

lAvatll:tillity Codes

!Dit j.& -CU

CHAPTER 1

INTRODUCTION

This Validation Summary Report /Q44'e describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/NIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

en though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.?

s-The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACrC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ad Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and du"'ing execution.

1"1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
S4 Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to Identify any language constructs not supported by
the compiler but required by the Ada Standard

• To determine that the Implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 88-05-24 at SYSTEAM KG at Karlsruhe.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. in the United States,
this is provided in accordance with the "Freedom of Information Act" (5

- U.S.C. 3552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

- The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

- The Pentagon, Re 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:

IABG m.b.H., Dept SZT
- Einsteinstrasse 20

8012 Ottobrunn
Federal Republic of Germany

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

.1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Btfnrcn a Unuai mr Ibi Ada Eroirammins Laneuua,
ANSI/NIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Utiltr il/ldilIgn Erclnurn and fuld/lnji, Ada Joint
Program Office, 1 January 1987.

3. Ada C2@1lir yallda11n jbllnn ah jMan/h i1IjI n jn jUldj, SofTech,
Inc., December 1986.

4. Ada C21211tr !aViiln a illXY U -i1 julf, December 1986.

-" 1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained In the Ada ni1Dtjr Ya1ida1lin Erggdu ru and

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Vithdrawn An ACVC test found to be incorrect and not used to check
- test conformity to the Ada Standard. A test may be incorrect

1-4

INTRODUCTION

because it has an invalid test objective, falls to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACYC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class t tests are expected to produce compilation errors.Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class I tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed .by Class E tests during compilation. Therefore, a Class

-' E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution Is attempted.
A Class L test passes if It is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK.FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK.FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation Is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: SYSTEAM Ada Compiler VAX/VMS, Version 1.8

ACYC Version: 1.9

Certificate Number: B8052411.09118

Host and Target Computer:

Machine: VAX 8530

Operating System: VMS Version 4.7

Memory Size: 32 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

2-1

CONFIGURATION INFORMATION

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), 056001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4AOO2B, D4AOO4A, and D4AOO4B.)

Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER, SHORT.SHORTINTEGER, SHORT.FLOAT, LONGFLOAT and
LONGLONGFLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX.INT during compilation, or it may raise

- NUMERIC-ERROR or CONSTRAINT-ERROR during execution. This
implementation raises CONSTRAINTERROR during execution. (See
test E24101A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

-' No exception is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

2-2

CONFIGURATION INFORMATION

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to Integer Is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.NAXINT components raises no exception. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT-ERROR when the array type is declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT-ERROR when the array type is
declared. (See test C52104Y.)

7 t A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an mplementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises CONSTRAINTERROR
when the array type is declared. (See test E52103Y.)

2-3

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
.... not appear to be evaluated in its entirety before CONSTRAINT_ERROR

is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E432122.)

iAll choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE :* 1) are
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005a.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C878623.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87D62D.)

Length clauses with SMALL specifications are supported. (See
IY tests A39005E and C87962C.)

There are restrictions for alignment clauses within record
representation clauses. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is supported for functions. (See tests LA3004A, LA3004B, EA3004C,
EA3OO4D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIALIJO can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE22O1D, and EE2201E.)

The package DIRECTIO can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE2101H, EE2401D, and EE2401G.)

Modes IN-FILE and OUT.FILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE2102E.)

2-5

CONFIGURATiON INFORMATION

Modes INJILE, OUTJILE, and INOUT.FILE are supported for
DIRECT_1O. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALJO and DIRECT.IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL-IO and DIRECT.IO. (See tests CE2106A and CE21O6B.)

Overwriting to a sequential file truncates the file to the last
element. (See test CE2208.)

An existing text file can be opened in OUTJILE mode, can be
created in OUT-FILE mode, and can be created in IN-FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text 1/0 for both reading only. (See tests CE3111A..E (5
tests), CE31148, and CE3115A.)

More than one internal file can be associated with each
non-temporary external file for sequential I/O for reading only.
(See tests CE2107A..D (4 tests), CE211O, and CE2111D.)

More than one internal file can be associated with each
non-temporary external file for direct I/O for reading only. (See
tests CE2107F..I (4 tests), CE2110D, and CEZIIIH.)

An Internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted but closed for SEQUENTIAL-IO, DIRECTIO, and
TEXTIO. (See test CE2110B.)

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE2108A and CE2108C.)

Generics.

SGeneric subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and DC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. Vhen this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 81 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing. Modifications
to the code, processing, or grading for 13 tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

Passed 107 1049 1776 17 17 46 3014

Inapplicable 1 2 77 0 1 0 81

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORlATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

------------ __a -J -5 ._A -- 2 -. __2 _10 -11 _12 .13 - --

Passed 182 569 644 245 166 98 142 326 137 36 234 3 232 3014

Inapplicable 22 3 30 3 0 0 1 1 0 0 0 0 21 81

Vithdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904R C35AO3E C35A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C850183 C878048 CC1311B BC31O5A ADIAOIA
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn, The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 81 tests were inapplicable for the
reasons indicated:

Tests C24113D..Y (22 tests) and C45621Q..Z (10 tests) contain
lines of lengths greater than 80 characters which is not supported
by this compiler.

3-2

TEST INFORMATION

record representation clause.

. C34007P, C34007S are expected to raise. CONSTRAINT.ERROR. this
implementation optimizes the code at compile time on lines 201 and
217 respectively, thus avoiding the operation which would raise
CONSTRAINT.ERROR and so no exception is raised. The AVO ruled
this behavior acceptable and the test NA.

C41401A is expected to raise CONSTRAINT_ERROR for the evaluation
of certain attributes, however this implementation derives the
values from the subtype of the prefix at compile time, as allowed
by 11.6(7) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT-ERROR is not raised. The AVO ruled this
behavior acceptable and the test NA.

* The following tests use LONG.INTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55D07A B55B09C

• C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C47004A is expected to raise CONSTRAINT.ERROR whilst evaluating
the comparison on line 51, but this compiler evaluates the result
without invoking the basic operation qualifier (as allowed by
11.6(7) LRM) which would raise CONSTRAINT-ERROR and so no
exception is raised. The AVO ruled this behavior acceptable and
the test NA.

C86001F redefines package SYSTEN, but TEXT.]O is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

* C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CE210A, CE2108C, CE3112A are inapplicable because temporary files
(sequential, direct, text) do not have names.

CE2107B..E (4 tests), CE2107G..I (3 tests), CE2111D, CE21114,
CE2110B, CE3111B..E (4 tests), CE3114B, CE3115A and CE3108A are
inapplicable because multiple internal files cannot be associated
with the same external file. The proper exception is raised when
multiple access is attempted.

3-3

TEST INFORMATION

EE2401D uses Instantlations of the package DIREC1IO with
unconstrained array types. This instantiation is rejected by this
compiler.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate Implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

822003A 824009A B2OOIA 838003A 838009A
7- B380091 B51001A B91001H BC2OO1D DC2001E

OC3204B BC32051 BC3205D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SYSTEAM Ada Compiler VAX/VMS Version 1.8 was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the SYSTEAM Ada Compiler VAX/VMS Version 1.8 using ACVC Version
1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a VAX 8530 host operating under VMS, Version
4.7.

3-4

TEST INFORMATION

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host

computer.
After the test files were loaded to disk, the full set of tests was
compiled on the VAX 8530. Object files were linked and executed on the
target. Results were printed from the host computer.

The compiler was tested using command scripts provided by SYSTEAM KG and
reviewed by the validation team. The compiler was tested using all default
settings.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation listings of Class B tests and
tests that raised an error during compilation, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 lest Site

Testing was conducted at SYSTEAM KG at Karlsruhe and was completed on
88-05-24.

3-5

Cil APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration of
Conformance concerning the SYSIEAM Ada Compiler
VAX/VMS, Version 1.8.

A-i

DF
DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Impleventor: SYSTEAM KG
Ada Validation Facility: IAIG m.b.H., Dept SZT
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: SYSTEAM Ada Compiler VAX/VNS
Base Compiler Version: Version 1.8
Host and Target Architecture ISA: VAX 8530 VMS 4.7

Implementor's Declaration

I, the undersigned, representing SYSTEAM KG, have implemented no deliberate
extensions to the Ada Language Standard ANSI/NIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that SYSTEAM KG is the
owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/RIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate name;

-- -' -----" Date: 24 May 1988
~~SYSTEAN KG mm

Dr. VWinterstein,

Owner's Declaration

I, the undersigned, representing SYSTEAM KG, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policyt as

.defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance, are in
compliancewith the Ada Language Standard ANSI/NIL-STD-1815A.

- --------- Date: 24 May 1988
SYSTEAM KG . /

Dr. Vinterstein,

-' A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the SYSTEAM Ada Compiler VAX/VMS, Version 1.8, are described in the
following sections, which discuss topics in Appendix F of the Ada Standard.
They are taken from the vendor's User Manual. Implementation-specific
portions of the package STANDARD are also included in this appendix.

25B-n

The specification of the package STANDARD is outlined here; it contains all predefined
identifiers of the VAX/VMS implementation.

The operations defined for the predefined types are not mentioned since they are
implicitly declared according to the language rules. Anonymous types (such as
UNIVERSALINTEGER) are not mentioned either.

PACKAGE standard IS

TYPE boolean IS (false, true);

TYPE short -shortinteger IS RANGE - 128 .. 127;

TYPE short-integer IS RANGE - 32-768 .. 32-767;

TYPE integer IS RANGE - 2-147-483-648 .. 2-147-483-647;

TYPE short-float IS DIGITS 6 RANGE
- hexl6#O.7FFFFF8#E+32 .. 16#0.7FFFJ'F8#E432;

-- the corresponding machine type is F-FLOAT

TYPE float IS DIGITS 9 RANGE
- 16*0.7FFFFFFF_FFFF_FF8#E.32
16#0.7FFFFFFF_FFFF_FF8#E32;

-- the corresponding machine type is D-FLOAT

TYPE long-float IS DIGITS 15 RANGE
- 16*0.7FFFFFFFFFFFFC#E256
16#0.7FFFFFFFFFFFFC#E255;

-- the corresponding machine type is G-FLOAT

TYPE long-long.Iloat IS DIGITS 33 RANGE
- 16#0.7FFFFFFFFFFFFFFF FFFFFFFFFFFC#E 4096

16#0.7FFFfFFFFFFFFFFYFFFFFFF FFFC#E+4096;
-- the corresponding machine type is H-FLOAT

-- TYPE character IS ... as in [ADAAppendix C)

-- FOR character USE ... as in [ADA.Appendix C)

-- PACKAGE ascii IS ... as in (ADA.Appendix C]

-- Predefined subtypes and string types ... as in [ADA.Appendix C]

TYPE duration IS DELTA 2#1.0#E-14 RANGE
- 131072.0 .. 131-071.99993896484375;

Appendix F Chapter 15

15 Appendix F

This is the Appendix F required in [ADA), in which all implementation-dependent
characteristics of an Ada implementation are described.

F.1 Implementation-dependent pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

F.1.1 Predefined language pragmas

The form and allowed places of the following pragmas are defined by the language;

their effect is (at least partly) implementation-dependent and stated here. All the

other pragmas listed in Appendix B of LADA] are implemented and have the effect

described there.

CONTROLLED
has no effect.

INLINE
Inline expansion of subprograms is supported with following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

INTERFACE
is only implemented for Assembly language; see §13.9 of this manual for details.

MEMORY.SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §13.1.

Chapter 15 Appendix F

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of
the subtype PRIORITY, and second, the effect on scheduling (§5) of not giving
this pragma for a task or main program. The range of subtype PRIORITY is 0
.. 15, as declared in the predefined library package SYSTEM (see §F.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by
not giving pragma PRIORITY for it is the same as if pragma PRIORITY 0 had
been given (i.e. the task has the lowest priority). Moreover, in this implementation
the package SYSTEM must be named by a with clause of a compilation unit if
the predefined pragma PRIORITY is used within that unit.

SHARED
has no effect. Note, however, that the implementation of tasking is such that every
variable is treated as if pragma SHARED had been given for it.

STORAGE-UNIT
has no effect.

SUPPRESS
has no effect, but see §F.1.2 for the implementation-defined pragma SUP-
PRESS.ALL.

SYSTEM-NAME
has no effect.

F.1.2 Imple mentation-defined pragmas

SQUEEZE
see §13.1.

SUPPRESS.ALL
causes all the run.time checks described in [ADA,§11.71 except ELABORA-
TIONCHECK to be suppressed; this pragma is only allowed at the start of a
compilation before the first compilation unit; it applies to the whole compilation.

Appendix F Chapter 15

F.2 Implementation-dependent attributes

The name, type and implementation-dependent aspects of every implementation-dependent
attribute is stated in this chapter.

F.2.1 Language-defined attributes

The name and type of all the language-defined attributes are as given in IADAJ. We
note here only the implementation-dependent aspects.

ADDRESS
The value delivered by this attribute applied to an object is the address of the
storage unit where this object starts.
For any other entity this attribute is not supported and will return the value
SYSTEM.null-address.

SIZE
The only implementation-dependent aspect is as follows:
for an object of an unconstrained record type the value delivered by this attribute
depends on the actual constrained, i.e. for different constraints the attribute will
possibly yield different values.

STORAGE.SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE-SIZE, see §13.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE.SIZE
given for the access type, the attribute delivers the number of storage units cur-
rently allocated for the collection. Note that dynamic collections are extended if
needed.
If the collection manager (cf. Chapter 12) is used for a dynamic collection the
attribute delivers the number of storage units currently allocated for the collection.
Note that in this case the number of storage units currently allocated may be
decreased by release operations.

The value delivered by this attribute applied to a task type or task object is as
follows:
If a length specification (STORAGE.SIZE, see §13.2) has been given for the task
type, the attribute delivers that specified value; the default value is returned
elsewhere.

Chapter 15 Appendix F

F.2.2 Implementoltion-defined attributes

There are no implementation-defined attributes.

Appendix F Chapter 15

F.3 Specification of the package SYSTEM

The package SYSTEM of ([ADA,§13.7]) is reprinted here with all implementation-
dependent characteristics and extensions filled in.

PACKAGE system IS

TYPE address IS PRIVATE;
TYPE name IS (vax.vms);

system-name : CONSTANT name : vax-vms;
storage-unit : CONSTANT :- 8;
memory-size : CONSTANT :a 2 ** 31;
minint : CONSTANT : - 2-147-483-648;
max-int : CONSTANT : 2147-483-647;
max-digits : CONSTANT : 33;
max-mantissa : CONSTANT : 31;
fine-delta : CONSTANT : 2#I.0#E-31;
tick : CONSTANT :w 0.2E-6;

SUBTYPE priority IS integer RANGE 0 .. 15;
SUBTYPE external-address IS string;
SUBTYPE byte IS integer RANGE 0..255;
TYPE long-word IS ARRAY (0..3) OF byte;
PRAGMA PACK (long-word);

FUNCTION convert-address
(addr : external-address) RETURN address;

FUNCTION convert-address
(addr : address) RETURN external-address;.

FUNCTION convert-address
(addr : long word) RETURN address;

FUNCTION convert-address
(addr : address) RETURN long-word;

FUNCTION "t" (addr : address; offset : integer)
RETURN address;

PRIVATE
-- private declarations

END system;

Chapter 15 Appendix F

F.4 Restrictions on representation clauses

See §§13.2-13.5 of this manual.

F.5 Conventions for implementation-generated names

There are no implementation-generated names denoting implementation-dependent
components ([ADA,§13.4]).

F.8 Expressions in address clauses

Address clauses (JADA,§13.5]) are supported only for objects except for task objects.
The object starts at the given address.

F.7 Restrictions on unchecked conversions

The implementation does support unchecked type conversions for all kind of source-
and target types with the restriction that the target type must not be an unconstrained
array type. Note that if

target .type'size > source-type'size,

the result value of the unchecked conversion is unpredictable.

F.8 Characteristics of the input-output packages

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [ADA) are reported in Chapter 14 of this manual.

Input-output Chapter 14

14 Input-output

In this chapter we follow the section numbering of Chapter 14 of [ADA] and provide
notes for the use of the features described in each section.

14.1 External files and file objects

The total number of open files (including the two standard files) must not exceed 18.
Any attempt to exceed this limit raises the exception USE-ERROR.

The only form of file sharing which is allowed is shared reading. If two or more files
are associate . with the same external file at one time (regardless of whether these files
are declared in the same program or task), all of these (internal) files must be opened
with the mode IN-FILE. An attempt to open one of these files with a mode other than
IN-FILE will raise the exception USE.ERROR.

Files associated with terminal devices (which is only legal for text files) are excepted
from this restriction. Such files may be opened with an arbitrary mode at the same
time and associated with the same terminal device.

The following restrictions apply to the generic actual parameter for ELEMENT.TYPE:

* input/output of access types is not defined.

* input/output of unconstrained array types is only possible with a variable record
format.

" for RMS sequential [relative or indexed] files the size of an object to be input or
output must not be greater than 32767 116383].

" input/output is not possible for an object whose (sub)type has a size which is not
a multiple of SYSTEM.STORAGE-UNIT. Such objects may only exist for types
for which a representation clause or pragma SQUEEZE is given. USE-ERROR
will be raised by any attempt to read or write such an object or to open or create
a file for such a (sub)type.

14.2 Sequential and direct files

Sequential and direct files are represented by RMS sequential, relative or indexed files
with fixed-length or variable-length records. Each element of the file is stored in one
record.

Chapter 14 Input-output

14-..1 File management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in (ADA].

14.2.1.1 The NAME and FORM parameters

The NAME parameter string must be a VMS file specification string and must not
contain wild cards, even if that would specify a unique file. The function NAME will
return a file specification string (including version number) which is the file name of
the file opened or created.

The Syntax of the FORM parameter string is defined by:

form-parameter ::= [form-specification { , form-specification I]

form-specification ::- keyword [=> value]

keyword :: identifier

value :: i identifier I string-literal I numeric-literal

For identifier, numeric-literal, string-literal see [ADA,Appendix El. Only an integer

literal is allowed as numeric-literal (see [ADA,§2.4).

In the following, the form specifications which are allowed for all files are described.

ALLOCATION -> numeric-literal

This value specifies the number of blocks which are allocated initially; it is only used
in a create operation and ignored in an open operation. The value of ALLOCATION
in the form string returned by the function FORM specifies the initial allocation size
for existing files too.

EXTENSION -> numeric-literal

Input-output Chapter 14

This value specifies the number of blocks by which a file is extended if necessary; the
value 0 means that the RMS default value is taken. For existing files, this value is only
used for processing between an open and a close operation.

For details see the VAX-II / RMS Reference Manual

MAXRECORDSIZE -> numeric.literal

This value specifies the maximum record size in bytes. The value 0 indicates that
there is no limit; for direct files, this value is only allowed for indexed files, whereas
for sequential files there is no such restriction. This form specification is only allowed
for files with variable record format. If the value is specified for an existing file it must
agree with the value of the external file.

For files with fixed-length records, the maximum record size equals
ELEMENT-TYPE'SIZE / SYSTEM.STORAGEUNIT. If a fixed record format is
used, all objects written to a file which are shorter than the maximum record size are
filled up with zeros (ASCII.NUL).

RECORD-FORMAT => VARIABLE I FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

Chapter 14 Input-output

14.-2.1. Sequcntia files

A sequential file is represented by a RMS sequential file with either fixed-length or
variable-length records which may be specified by the form parameter.

If a fixed record format is used, all objects written to a file which are shorter than the
maximum record size are filled up with zeros (ASCII.NUL).

ENDOF-FILE

If the keyword END.OF.FILE is specified for an existing file in an open for an output
file, then the file is opened at the end of the file; i.e. the existing file is extended and
not rewritten. This keyword is only allowed for an output file; it only has an effect in
an open operation and is ignored in a create.

The default form string for a sequential file is

"ALLOCATION u> 3. EXTENSION => 0. " k
"RECORDFORMAT -> VARIABLE. MAXIRECORDSIZE -> 0

The default form may be used for all types (except for those excluded in §14.1).

14.2-.1.8 Direct files

The implementation dependent type COUNT defined in the package specification of
DIRECTIO has an upper bound of :

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

Direct files are represented by RMS sequential files with fixed-length records or by
relative or indexed files with either fixed-length or variable-length records. For in-
dexed files, the record index is stored as unsigned four bytes binary value in the first
four bytes of each record. If not explicitly specified, the maximum record size equals
ELEMENTTYPE'SIZE / SYSTEM.STORAGE.UNIT.

BUCKET-SIZE => numeric-literal

Input-output Chapter 14

This value specifies the number of blocks (one block is 512 bytes) for one bucket; the
value 0 means that the value is evaluated by RMS to the minimal number of blocks
which is necessary to contain one record. The value must be in the range from 0 up
to 32. This form specification is only allowed for relative or indexed files. If the value
is specified for an existing file it must agree with the value of the external file.

ORGANIZATION -> INDEXED I RELATIVE I SEQUENTIAL

This form specification is used to specify the file organization. If the organization is
specified for an existing file it must agree with the organization of the external file.

The default form string for a direct file is

"ALLOCATION => 3. EXTENSION => 0, " &

"ORGANIZATION -> SEQUENTIAL. RECORD-FORMAT -> FIXED"

Indexed files with variable-length records and a maximum record size of 0 may be used
for all types (except for those excluded in §14.1). Relative files with variable-length
records may also be used for all types, but in this case a maximum record size must be
specified explicitly. Sequential, relative or indexed files with fixed-length records may
not be used for unconstrained array types.

Chapter 14 Input-output

14.3 Text input/output

Text files are represented as sequential files with variable record format. One line is
represented as a sequence of one or more records; all records except for the last one
have a length of exactly MAX-RECORD-SIZE and a continuation marker (ASCII.LF)
at the last position. A line of length MAXRECORD.SIZE is represented by one
record of this length. A line terminator is not represented explicitly in the external
file; the end of a record which is shorter than MAXRECORD.SIZE or which has
length exactly MAX.RECORD.SIZE and does not have a continuation marker as its
last character is taken as a line terminator.

The value MAX.-RECORDSIZE may be specified by the form string for an output file
and it is taken from the external file for an input file; for an input file, the value 0 stands
for the default of 255. For all files which are created, the value MAXRECORD.SIZE
is used for the file attribute MRS (maximum record size).

A page terminator is represented as a record consisting of a single ASCII.FF. A record
of length zero is assumed to precede a page terminator if the record before the page
terminator is another page terminator or a record of length MAX.RECORD.SIZE
with a continuation marker at the last position; this implies that a page terminator is
preceded by a line terminator in all cases.

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last record of the file. For input from a terminal, a
file terminator is represented as ASCII.SUB (= CTRL/Z).

Input-output Chapter 14

14.3.1 File management

In the following, the form specifications which are only allowed for text files or have a

special meaning for text files are described.

CHARACTER-IO

The predefined package TEXT_1O was designed for sequential text files; moreover, this
implementation always uses sequential :files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the terminal (as opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line
terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons,in addition to the input/output facilities with record structured ex-
ternal files, another form of input/output is provided for text files: It is possible to
transfer single characters from/to a terminal device. This form of input/output is spec-
ified by the keyword CHARACTER-IO in the form string. If character i/o is specified,
no other form specification is allowed and the file name must denote a terminal device.

For an infile, the external file (associated with a terminal) is considered to contain
a single line. An ASCILSUB (= CTRL/Z) character represents an line terminator
followed by a page terminator followed by a file terminator. Arbitrary characters
(including all control characters except for ASCII.SUB) may be read; a character read
is not echoed to the terminal.

For an outfile, arbitrary characters (including all control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCII.CR followed by ASCII.LF, a page terminator is represented as
ASCII.FF and a file terminator is not represented on the external file.

Chapter 14 Input-output

Only for input files

PROMPTING -> string-literal

This string is output on the terminal before an input record is read if the input file is
associated with a terminal; otherwise this form specification is ignore!:.

Only for output files:

MAXRECORDSIZE => numeric-literal

This value specifies the maximum length of a record in the external file. Each record
which is not the last record of a line has exactly this maximum record size, with a
continuation marker (ASCII.LF) at the last position. The value must be in the range
2 .. 255. If a file is created, the specified value (or the default of 255) is used for the
file attribute MRS (maximum record size) of the external file. If the value is specified
for an existing file it must be identical to the value of the external file.

The default form string for an input text file is :

"ALLOCATION -> 3. EXTENSION => 0. PROMPTING => """"

The default form string for an output text file is :

"ALLOCATION -> 3, EXTENSION => 0. MAXRECORD.SIZE => 255"

14.3.2 Default input and output fiJes

The standard input (reap. output) file is associated with the sysi.em default logical
names SYS$INPUT (reap. SYS$OUTPUT) of VMS. If a program reads from the
standard input file, the logical name SYS$INPUT must denote an existing file. If a

Input-output Chapter 14

program writes to the standard output file, a file with the logical name SYSSOUTPUT
is created if no such file exists; otherwise the existing file is extended.

The qualifiers /INPUT and /OUTPUT may be used for the VMS RUN command to
associate VMS files with the standard files of TEXT-IO.

The name and form strings for the standard files are:

standard-input : NAME -> "SYS$INPUT:"
FORM *> "PROMPTING -> ""*""

standard-output : NAME > "SYS$OUTPUT:"
FORM *> "MAX-RECORDSIZE -> 255"

14.3.10 Implementation-defined types

The implementation dependent types COUNT and FIELD defined in the package
specification of TEXT-1O have the following upper bounds:

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

FIELD'LAST = 255

Chapter 14 Input-output

14.4 Exceptions in input-output

For each of NAME-ERROR, USEERROR, DEVICEERROR and DATA-ERROR we
list the conditions under which that exception can be raised. The conditions under
which the other exceptions declared in the package IO-EXCEPTIONS can be raised
are as described in [ADA,§14.41.

NAME.ERROR

* in an OPEN operation, if the specified file does not exist;

* in a CREATE operation, if the NAME string contains an explicit version number
and the specified file already exists;

* if the name parameter in a call of the CREATE or OPEN procedure is not a legal
VMS file specification string; for example, if it contains illegal characters, is too
long or is syntactically incorrect; and also if it contains wild cards, even if that
would specify a unique file.

USE.ERROR

• if :tn attempt is made to increase the total number of open files (including the two
standard files) to more than 18;

• whenever an error occurred during an operation of the underlying RMS system.
This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a size restriction is violated,
a capacity limit is exceeded or for similar reasons;

" if the function NAME is applied to a temporary file;

• if the characteristics of the external file are not appropriate for the file type; for
example, if the record size of a file with fixed-length records does not correspond
to the size of the element type of a DIRECTIO or SEQUENTIAL.IO file. In
general it is only guaranteed that a file which is created by an Ada program may
be reopened by another program if the file types and the form strings are the
same;

* if two or more (internal) files are associated with the same external file at one
time (regardless of whether these files are declared in the same program or task),
and an attempt is made to open one of these files with mode other than IN.FILE.
However, files associated with terminal devices (which is only legal for text files)
are excepted from this restriction. Such files may be opened with an arbitrary
mode at the same time and associated with the same terminal device;

• if a given FORM parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§14.2-3 is not fulfilled;

* if an attempt is made to open or create a sequential or direct file for an element
type whose size is not a multiple of SYSTEM.STORAGE.-UNIT; or if an attempt
is made to read or write an object whose (sub)type has a size which is not a

Input-output Chapter 14

multiple of SYSTEM.STORAGE.UNIT (such situations can only arise for types
for which a representation clause or pragma SQUEEZE is given);

DEVICE-ERROR
is never raised. Instead of this exception the exception USE.ERROR is raised
whenever an error occurred during an operation of the underlying RMS system.

DATA.ERROR

* the conditions under which DATA.ERROR is raised in the package TEXTIO are
laid down in [ADA]; the following notes apply to the packages SEQUENTIAL-IO
and DIRECTO:

" by the procedure READ if the size of a variable-length record in the external file
to be read exceeds the storage size of the given variable or else the size of a fixed-
length record in the external file to be read exceeds the storage size of the given
variable which has exactly the size ELEMENT-TYPE'size.

* In general, the exception DATA.ERROR is not raised by the procedure READ if
the element read is not a legal value of the element type.

* by the procedure READ if an element with the specified position in a direct file
does not exist; this is only possible if the file is associated with a relative or an
indexed file.

14.6 Low level input-output

We give here the specification of the package LOW-LEVEL.IO:

PACKAGE low-level-io IS

TYPE device-type IS (null-device);

TYPE data-type IS
RECORD

NULL;
END RECORD;

PROCEDURE send-control (device : device-type;
data IN OUT data-type);

PROCEDURE receive-control (device : device-type;
data : IN OUT data-type);

Chapter 14 Input-output

END low-.level-io;

Note that the enumeration type DEVICE-.TYPE has only one enumeration value,
NULL-DEVICE; thus the procedures SEND-.CONTROL and RECEIVE-CONTROL
can be called, but SEND-.CONTROL will have no effect on any physical device and the
value of the actual parameter DATA after a call of RECEIVE-CONTROL will have
no physical significance.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

--i-z-nd. n -------------- Valu . .------------------

*DIG JD1 (1..7P > 'A's 80 > '1')
Identifier the size of the
maximum input line length with
varying last character.

..IGID2 (1..79 :> 'A', 80 => '2')
Identifier the size of the
maximum input line length with
varying last character.

SBIG_ID3 (1..40:>'A',41=>'1',42..80=>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$SIG_ID4 (1..40=>'A',41=>'2',42..80=>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG.INTLIT (1..77>'0')"298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-!

TEST PAIRAMETERS

---- --- - - ----- -- ---- ------- ------

$BIG-REAL-.LIT (1..74:)'0')1P69.0E1"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIC..S7RING1
A string literal which when

af catenated with DIG_.S7RING2
yields the image of DIGJD1.

$BIG..STRING2 (1:>'' l,2. .40:>'A' ,41:>'1' ,42:>'"')
A string literal which when
catenated to the end of
BIC.STRINGI yields the image of
DIG-JD1.

MDANKS Q1..60 1)
A sequence of blanks twenty
characters less thin the size
of the maximum line length.

$COUNT-LAST 2147483647
A universal integer
literal whose value is
T EXT_1O.COUNT'LAST.

$FIELD_.LAST25
A universal integer
literal whose value is
TEXT_10.FIELD' LAST.

$FILENAME.VITHBADCHARS abc!fdef.dat
An external file name that
either contains invalid
characters or is too long.

$FILE_.NAMEVITHV.ILD_.CARD..CHAR abc'def.dat
An external file name that
either contains a wild card
character or is too long.

$GREATERHAN_.DURA7ION 0.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

-. TESI PARA14EYERS

----------- -----.In~geeeeeeeeeI -------- -------
,GREATER..TNAN.DURATIO-ASE-LAST 200-.000 .0

A universal real literal that is
greater than DURATION'DASE'LAST.

$ILLE6AL_.EXERNALFILENAME1 x* 'yz.dat
An external file name which
contains Invalid characters.

$ILLEGAL-.EXTERNALFILE-NAKE2 (1. .60 *) WA)
An external file name which
Is too long.

$It4TEGER..rIRST -2147483648
A universal integer literal
whose value is INTEGERIFIRST.

$INTEGER..LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER-LAST-.PLUS..1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS_.THAN-.DURATION -0.0
A', A universal real literal that

lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

-~ in the range of DURATION.

$LESSJIIAN_.DURATION-.BASE_.FIRST -20O..000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$01AX.DIGITS 33
Maximum digits supported for
4loatingo-point types.

*I4AX..IN-.LEN 80
Maximum input line length
permitted by the implementation.

*MAXINT 2147483647
-~A universal integer literal

whose value is SYSTEM.NAX-JNT.

* *MAXJNTLU5-.1 2147483648
A universal integer literal
whose value is SYSTEM4.MAX-JNT+1.

C -3

TEST PARAMETERS

------------------- M t--------------------------- -

*MAXLENINTASED.LITERAL u:I3 7:''&l
A universal integer based
literal whose value is 21131
with enough leading zeroes in
the mantissa to be MAX-IN.LEW
long.I

$NAX..LEN_.REALDBASED..LIIERAL "6"(.7=0)".:
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_.INLEN long.

A string literal of size
MAXJN_.LEN, including the quote
characters.

$MIN..INT -2147483648
A universal integer literal
whose value is SYSTEf4.NIN-JN7.

WMAlE SHORT-.SHORLJINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,

-' SHORL.FLOAT, SHORT_.INTEGER,
LONGFLOAT, or LONG-INTEGER.

*NEGBASED-INT 16#FFFFFFFE#
A based Integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYS7EN.MAX-INT.

C -4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

- "AI-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

. E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the

CIA matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINT-ERROR.

. C35502P: The equality operators in line 62 and 69 should be
inequality operators.

. A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT.ERROR, for that
value lies outside of the actual range of the type.

* C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAIN7_ERROR, because its upper'bound exceeds
that of the type.

C35904B: The subtype declaration that Is expected to raise
CONSTRAINT.ERROR when its compatibility is checked against that of
various types passed as actual generic parameters, may in fact
raise NUMERIC-ERROR for reasons not anticipated by the test.

C35AO3E and C35AO3R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

-. D-i

WITHDRAVN TESTS

. C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise a" exception when elaborated.

. C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

. C37215C, C37215E, C37215G and C37215H: Various discriminant
constraints are Incorrectly expected to be incompatible with type
CONS.

. C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAIN7_ERROR.

. C41402A: The attribute 'STORAGE-SIZE Is Incorrectly applied to an
object of an access type.

. C45332A: The test expects that either an expression in line 52
will raise an exception or else MACHINE.OVERFLOWS is FALSE.
However, an implementation may evaluate the expression correctly
using a type with a wider range than the base type of the
operands, and NACHINE.OVERFLOWS may still be TRUE.

. C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

. A74106C, C850188, C878048 and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT.ERROR. Errors of this sort
occur at lines 37 1 59, 142 1 143, 16 1 48, and 252 1 253 of the
four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

. AD1AOIA: The declaration of subtype SINT3 raises CONSTRAINT.ERROR
for implementations which select INT'SIZE to be 16 or greater.

. CE2401H: The record aggregates In lines 105 and 117 contain the
wrong values.

. CE320BA: This test exopects that an attempt to open the default
output file (after it was closed) with mode IN-FILE raises
NAME-ERROR or USEERROR; by Commentary AI-00048, MODEERROR should
be raised.

D-2

SUPPLEMENTARY
I

4

/

* 4 /

f U
4,

4, *

1.I..

1"

I
* I

* 1.
4

INFORMATION"
,ipm. t.'1

* A

*

ERRATA DTIC# A204 279

,9)1- 6 0.40e7 7
Ada Compiler Validation Summary Report:

Compiler Name: SYSTEAN Ada Compiler VAX/VMS
Compiler Version: Version 1.8

Certificate Number: 88052411.09118

Host and target: VAX 8530 under VMS, Version 4.7

Testing Completed 88-05-24 Using ACVC 1.9

This report has been reviewed and is approved.

:IABG . Dept SZT
Dr. H. Hu ,mel
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

Ada Validatilon Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jn~t' Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

1Y i2

